Friday, 13 April 2012

SYLLABUS- ELECTRICAL ENGINEERING IV SEMESTER



181401                                    NUMERICAL METHODS
(Common to Civil, Aero & EEE)
 L  T  P   C
3   1   0    4

AIM    
With the present development of the computer technology, it is necessary to develop efficient algorithms for solving problems in science, engineering and technology. This course gives a complete procedure for solving different kinds of problems occur in engineering numerically.
    
OBJECTIVES
At the end of the course, the students would be acquainted with the basic concepts in numerical methods and their uses are summarized as follows:
i.      The roots of nonlinear (algebraic or transcendental) equations, solutions of large system of linear equations and eigen value problem of a matrix can be obtained numerically where analytical methods fail to give solution.
ii.     When huge amounts of experimental data are involved, the methods discussed on interpolation will be useful in constructing approximate polynomial to represent the data and to find the intermediate values.
iii.    The numerical differentiation and integration find application when the function in the analytical form is too complicated or the huge amounts of data are given such as series of measurements, observations or some other empirical information.
iv.   Since many physical laws are couched in terms of rate of change of one/two or more independent variables, most of the engineering problems are characterized in the form of either nonlinear ordinary differential equations or partial differential equations. The methods introduced in the solution of ordinary differential equations and partial differential equations will be useful in attempting any engineering problem.



1.    SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS                9
Solution of equation - Fixed point iteration: x=g(x) method – Newton’s method –   Solution of linear system by Gaussian elimination and Gauss-Jordon methods - Iterative methods -  Gauss-Seidel methods - Inverse of a matrix by  Gauss Jordon method – Eigen value of a matrix by power method and by Jacobi method for symmetric matrix.

     2   INTERPOLATION AND APPROXIMATION                                               9
Lagrangian Polynomials – Divided differences – Interpolating with a cubic spline – Newton’s forward and backward difference formulas.

     3. NUMERICAL DIFFERENTIATION AND INTEGRATION                           9

Differentiation using interpolation formulae –Numerical integration by trapezoidal and Simpson’s 1/3 and 3/8 rules – Romberg’s method – Two and Three point Gaussian quadrature formulas – Double integrals using trapezoidal and Simpsons’s rules.  

   4.    INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL
      EQUATIONS                                                                                                      9

Single step methods: Taylor series method – Euler methods for First order Runge – Kutta method for solving first and second order equations – Multistep methods: Milne’s and Adam’s predictor and corrector methods.

5.         BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL   DIFFERENTIAL EQUATIONS                                                                        9

Finite difference solution of second order ordinary differential equation – Finite difference solution of one dimensional heat equation by explicit and implicit methods – One dimensional wave equation and two dimensional Laplace and Poisson equations.

                                                                                     
 L = 45   T = 15   Total = 60

TEXT BOOKS

1.         VEERARJAN,T and RAMACHANDRAN.T, ‘NUMERICAL MEHODS with programming in ‘C’ Second Edition  Tata McGraw Hill Pub.Co.Ltd, First reprint 2007.
2.         SANKAR RAO K’ NUMERICAL METHODS FOR SCIENTISITS AND ENGINEERS –3rd Edition Princtice Hall of India Private, New Delhi, 2007.

REFERENCE BOOKS

1.         P. Kandasamy, K. Thilagavathy and K. Gunavathy, ‘Numerical Methods’, S.Chand Co. Ltd., New Delhi, 2003.
2.         GERALD C.F. and WHEATE, P.O. ‘APPLIED NUMERICAL ANALYSIS’… Edition, Pearson Education Asia, New Delhi.




131401                            ELECTRICAL MACHINES – I                                       
L  T  P C
3  1   0    4
 AIM
To expose the students to the basic principles of Electro mechanical Energy Conversion in Electrical Apparatus and the operation of Transformers and DC Machines.
OBJECTIVES
i.          To familiarize the constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
ii.         To introduce the principles of electromechanical energy conversion in singly and multiply excited systems.
iii.        To study the working principles of electrical machines using the concepts of electromechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
iv.       To study the working principles of DC machines as Generator and Motor, types, determination of their no-load/load characteristics, starting and methods of speed control of motors.
v.        To estimate the various losses taking place in D.C. machines and to study the different testing methods to arrive at their performance.                                                                         

1.       INTRODUCTION                                                                       6                                   
Electrical machine types – Magnetic circuits – Inductance – Statically and Dynamically induced EMF - Torque – Hysteresis- Core losses - AC operation of magnetic circuits.



2.    TRANSFORMERS                                                                         10            
Construction – principle of operation – equivalent circuit – losses – testing – efficiency and voltage regulation – auto transformer – three phase connections – parallel operation of transformers – tap changing.

3.  ELECTROMECHANICAL ENERGY CONVERSION                           9            
Energy in magnetic systems – field energy, coenergy and mechanical force – singly and multiply excited systems.

4.  BASIC CONCEPTS IN ROTATING MACHINES                                 9     
   Generated voltages in ac and dc machines, mmf of distributed windings – magnetic fields in rotating machines – rotating mmf waves – torque in ac and dc machines.

5. DC MACHINES                                                        11                               
Construction – EMF and torque – circuit model – armature reaction – commutation – methods of excitation – characteristics of generators – characteristics of motors – starting and speed control – testing and efficiency – parallel operation.
                                                                                                    L = 45 T = 15   Total = 60

TEXT BOOK
1.    Nagrath I. J and Kothari D. P. ‘Electric Machines’, Tata McGraw Hill Publishing Company Ltd, 1990.
2.   P.S. Bimbhra, ‘Electrical Machinery’, Khanna Publishers, 2003.
REFERENCES
1.    Fitzgerald.A.E., Charles Kingsely Jr, Stephen D.Umans, ‘Electric Machinery’, McGraw Hill Books Company, 1992.
2.    P. C. Sen., ‘Principles of Electrical Machines and Power Electronics’, John Wiley&Sons, 1997.
3.   K. Murugesh Kumar, ‘Electric Machines’, Vikas publishing house Pvt Ltd, 2002.




131402                        POWER PLANT ENGINEERING                                
L  T  P   C
3   1   0    4
AIM
Expose the students to basics of various power plants so that they will have the comprehensive idea of power system operation.

OBJECTIVES
To become familiar with operation of various power plants.

1    THERMAL POWER PLANTS

Basic thermodynamic cycles, various components of steam power plant-layout-pulverized  coal burners- Fluidized bed combustion-coal handling systems-ash handling systems- Forced draft and induced draft fans- Boilers-feed pumps-super heater- regenerator-condenser- dearearators-cooling tower

2   HYDRO ELECTRIC POWER PLANTS
     
Layout-dams-selection of water turbines-types-pumped storage hydel plants

3    NUCLEAR POWER PLANTS

Principles of nuclear energy- Fission reactions-nuclear reactor-nuclear power plants

4    GAS AND DIESEL POWER PLANTS

 Types, open and closed cycle gas turbine, work output & thermal efficiency, methods to  improve performance-reheating, intercoolings, regeneration-advantage and disadvantages-  Diesel engine power plant-component and layout

5    NON-CONVENTIONAL POWER GENERATION  

Solar energy collectors, OTEC, wind power plants, tidal power plants and geothermal resources, fuel cell, MHD power generation-principle, thermoelectric power generation,  thermionic power generation

TEXT BOOKS
1.    A Course in Power Plant Engineering by Arora and Domkundwar, Dhanpat Rai and
       Co.Pvt.Ltd., New Delhi.

2.  Power Plant Engineering by P.K. Nag, Tata McGraw Hill, Second Edition , Fourth reprint 2003.

REFERENCES
1.    Power station Engineering and Economy by Bernhardt G.A.Skrotzki and William A.         Vopat- Tata McGraw Hill Publishing Company Ltd., New Delhi, 20th reprint 2002.

2.    An introduction to power plant technology by G.D. Rai-Khanna Publishers,Delhi-
       110 005.
3.    Power Plant Technology, M.M. El-Wakil McGraw Hill 1984.












131403                                    CONTROL SYSTEMS                                          
L  T  P  C
3  1  0  4
(Common to EEE, EIE & ICE)

AIM
To provide sound knowledge in the basic concepts of linear control theory and design of control system.

OBJECTIVES
i        To understand the methods of representation of systems and to desire their transfer function models.
ii        To provide adequate knowledge in the time response of systems and steady state error analysis.
iii       To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems.
iv      To understand the concept of stability of control system and methods of stability analysis.
v       To study the three ways of designing compensation for a control system.
1.         SYSTEMS AND THEIR REPRESENTATION                                                     9
Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.   

2.         TIME RESPONSE                                                                                     9
Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – P, PI, PID modes of feedback control.



3.        FREQUENCY RESPONSE                                                                                   9
Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response – Correlation between frequency domain and time domain specifications.
4.         STABILITY OF CONTROL SYSTEM                                                                 9
Characteristics equation – Location of roots in S plane for stability – Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition – Gain margin and phase margin – Nyquist stability criterion.
5.         COMPENSATOR DESIGN                                                                                   9
Performance criteria – Lag, lead and lag-lead networks – Compensator design using bode plots.
 L  = 45   T = 15  Total = 60
TEXT BOOKS
1. I.J. Nagrath and M. Gopal, ‘Control Systems Engineering’, New Age International Publishers, 2003.
2. Benjamin C. Kuo, Automatic Control systems, Pearson Education, New Delhi, 2003.

REFERENCE BOOKS
1. K. Ogata, ‘Modern Control Engineering’, 4th edition, PHI, New Delhi, 2002.
2. Norman S. Nise, Control Systems Engineering, 4th Edition, John Wiley, New Delhi, 2007.
3. Samarajit Ghosh, Control systems, Pearson Education, New Delhi, 2004
4. M. Gopal, ‘Control Systems, Principles and Design’, Tata McGraw Hill, New Delhi, 2002.




131404           LINEAR INTEGRATED CIRCUITS AND APPLICATIONS       3   0   0   3
(Common to EEE, EIE & ICE)
AIM
To introduce the concepts for realizing functional building blocks in ICs, fabrications & application of ICs.

OBJECTIVES
i.              To study the IC fabrication procedure.
ii.             To study characteristics; realize circuits; design for signal analysis using Op-amp ICs.
iii.            To study the applications of Op-amp.
iv.           To study internal functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits, ADCs.

1.         IC FABRICATION                                                                                                9
IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realisation of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs.
2.         CHARACTERISTICS OF OPAMP                                                                      9
Ideal OP-AMP characteristics, DC characteristics, AC characteristics, offset voltage and current: voltage series feedback and shunt feedback amplifiers, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – summer, differentiator and integrator.
3.         APPLICATIONS OF OPAMP                                                                               9
Instrumentation amplifier, first and second order active filters, V/I & I/V converters, comparators, multivibrators, waveform generators, clippers, clampers, peak detector, S/H circuit, D/A converter (R-2R ladder and weighted resistor types), A/D converter - Dual slope, successive approximation and flash types.
4.         SPECIAL ICs                                                                                                        9
555 Timer circuit – Functional block, characteristics & applications; 566-voltage controlled oscillator circuit; 565-phase lock loop circuit functioning and applications, Analog multiplier ICs.
5.         APPLICATION ICs                                                                                               9
IC voltage regulators - LM317, 723 regulators, switching regulator, MA 7840, LM 380 power amplifier, ICL 8038 function generator IC, isolation amplifiers, opto coupler, opto electronic ICs.
L = 45   Total = 45
 TEXT BOOKS
1.         Ramakant A.Gayakward, ‘Op-amps and Linear Integrated Circuits’, IV edition, Pearson Education, 2003 / PHI. (2000)
2.         D.Roy Choudhary, Sheil B.Jani, ‘Linear Integrated Circuits’, II edition, New Age, 2003.
REFERENCE BOOKS
1.         Jacob Millman, Christos C.Halkias, ‘Integrated Electronics - Analog and Digital circuits system’, Tata McGraw Hill, 2003.
2.         Robert F.Coughlin, Fredrick F.Driscoll, ‘Op-amp and Linear ICs’, Pearson Education, 4th edition, 2002 / PHI.
3.          David A.Bell, ‘Op-amp & Linear ICs’, Prentice Hall of India, 2nd edition, 1997




131405                            DIGITAL LOGIC CIRCUITS                                    
L  T  P  C
3   1  0  4
     
AIM
To introduce the fundamentals of Digital Circuits, combinational and sequential circuit.
OBJECTIVES
i.          To study various number systems and to simplify the mathematical expressions 
             using Boolean functions – simple problems.
ii.          To study implementation of combinational circuits
iii.            To study the design of various synchronous and asynchronous circuits.
iv.           To expose the students to various memory devices.
v.            To introduce digital simulation techniques for development of application oriented logic circuit.

1. BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS                                 9
Boolean algebra: De-Morgan’s theorem, switching functions and simplification using K-maps & Quine McCluskey method, Design of adder, subtractor, comparators, code converters, encoders, decoders, multiplexers and demultiplexers.

2.  SYNCHRONOUS SEQUENTIAL CIRCUITS                                                 9
Flip flops - SR, D, JK and T. Analysis of synchronous sequential circuits; design of synchronous sequential circuits – Counters, state diagram; state reduction; state assignment.




3. ASYNCHRONOUS SEQUENCTIAL CIRCUIT                                                           9
Analysis of asynchronous sequential machines, state assignment, asynchronous design problem.

4.  PROGRAMMABLE LOGIC DEVICES, MEMORY AND LOGIC FAMILIES                                                                                                                                 
Memories: ROM, PROM, EPROM, PLA, PLD, FPGA, digital logic families: TTL, ECL, CMOS.

5.   VHDL
RTL Design – combinational logic – Types – Operators – Packages – Sequential circuit – Sub programs – Test benches. (Examples: adders, counters, flipflops, FSM, Multiplexers / Demltiplexers).

           L = 45   T = 15   Total = 60
TEXT BOOKS
1. Raj Kamal, ‘ Digital systems-Principles and Design’, Pearson education 2ndedition,      2007
2. M. Morris Mano, ‘Digital Design’, Pearson Education, 2006.
3. John M.Yarbrough, ‘Digital Logic, Application & Design’, Thomson, 2002.

REFERENCES
1. Charles H.Roth, ‘Fundamentals Logic Design’, Jaico Publishing, IV edition, 2002.
2. Floyd and Jain, ‘Digital Fundamentals’, 8th edition, Pearson Education, 2003.
3.John F.Wakerly, ‘Digital Design Principles and Practice’, 3rd edition, Pearson  
   Education,   2002.
4. Tocci, “Digital Systems : Principles and aopplications, 8th Edition” Pearson Education.




131451            CONTROL SYSTEM LABORATORY                                           0 0 3 2
 1.    Determination of transfer function of DC Servomotor
2.    Determination of transfer function of AC Servomotor.
3.    Analog simulation of Type - 0  and Type – 1 systems

4.    Determination of transfer function of  DC Generator

5.    Determination of transfer function of  DC Motor

6.    Stability analysis of linear systems

7.    DC and AC position control systems

8.    Stepper motor control system

9.    Digital simulation of  first  systems

10.  Digital simulation of  second  systems

P = 45   Total = 45



Requirement for a batch of 30 students
S.No.
Description of Equipment
Quantity required
Quantity available
Deficiency %
1.      
Interface such as, A/D, D/A converter, DMA, PIC Serial, Interface, Temperatures controller, Stepper motor, Key board
4 each
2.      
CRO and function generator
3 each
3.      
IC trainer Kit
15
4.      
Analog AC trainer kit
4
5.      
Components and bread boards
10 each
6.      
Chips IC – 7400
10
7.      
Chips IC – 7402
10
8.      
Chips IC – 7408
10
9.      
Chips IC – 7432
10
10.    
Chips IC – 7410
25
11.    
Chips IC – 555
10
12.    
Chips IC – 741
10
13.    
Chips IC – 74153
10
14.    
Chips IC – 7474
10
15.    
Chips IC – 7490
10
16.    
Chips IC – 7447
10
17.    
Chips IC – 7476
10
18.    
Chips IC – 7420
10
19.    
Chips IC – 7404
15
20.    
Chips LM – 317
10
21.    
Chips LM – 723
10
22.    
Chips MA – 7840
10
23.    
Chips LM – 380
10
24.    
Chips ICL - 8038
10
25.    
Traffic light control kit
2
26.    
VDU
2
27.    
7 segment Display
5
28.    
Interfacing card such as keyboard etc.
3 each
29.    
Work tables
15





131453                        ELECTRICAL MACHINES LABORATORY – I              0 0 3 2

AIM

To expose the students to the operation of D.C. machines and transformers and give them experimental skill.

1.           Open circuit and load characteristics of separately and self excited DC shunt generators.
2.           Load characteristics of DC compound generator with differential and cumulative connection.
3.           Load characteristics of DC shunt and compound motor.
4.           Load characteristics of DC series motor.
5.           Swinburne’s test and speed control of DC shunt motor.
6.           Hopkinson’s test on DC motor – generator set.
7.           Load test on single-phase transformer and three phase transformer connections.
8.           Open circuit and short circuit tests on single phase transformer.
9.           Sumpner’s test on transformers.
10.        Separation of no-load losses in single phase transformer.

TOTAL: 45 PERIODS









Requirement for a batch of 30 students
S.No.
Description of Equipment
Quantity required
Quantity available
Deficiency %
1.     
D.C motor – Generator set
D.C motor – Shunt Generator
D.C motor – Compound Generator

2 set
2 set
2.     
D.C. Shunt Motor
2 Nos.
3.     
D.C. Series Motor
1 No.
4.     
D.C. Compound Motor
1 No.
5.     
Single phase transformers
7 Nos.
6.     
Three phase transformers
2 Nos.
7.     
D.C. Motor – Alternator set
4 sets
8.     
Three phase Induction Motor (Squirrel cage)
3 Nos.
9.     
Three phase slip ring Induction Motor
1 No.
10.   
Single phase Induction Motor
2 Nos.
11.   
Resistive load
3 phase – 2 , single phase - 3
5 Nos.
12.   
Inductive load
1 No.
13.   
Single phase Auto transformer
5 Nos.
14.   
Three phase Auto transformer
3 Nos.
15.   
Moving Coil Ammeter of different ranges
20 Nos.
16.   
Moving Coil Voltmeter of different ranges
20 Nos.
17.   
Moving Iron Ammeter of different ranges
20 Nos.
18.   
Moving Iron voltmeter of different ranges
20 Nos.
19.   
Wire wound Rheostats of different ratings
30 Nos.
20.   
Tachometers
10 Nos.
21.   
Single element wattmeters of different ranges 
   UPF / LPF
20 Nos.
22.   
Double element wattmeters of different ranges
4 Nos.
23.   
Power factor meter
2 Nos.
24.   
Digital multimeter
5 Nos.
25.   
Three point starter, four point starter,DOL starter, manual star / delta starter, semi automatic and fully automatic star / delta starter
1 No each for study experiment

No comments:

Post a Comment